Analysis of an unconditionally convergent stabilized finite element formulation for incompressible magnetohydrodynamics
نویسندگان
چکیده
In this work, we analyze a recently proposed stabilized finite element formulation for the approximation of the resistive magnetohydrodynamics equations. The novelty of this formulation with respect to existing ones is the fact that it always converges to the physical solution, even when it is singular. We have performed a detailed stability and convergence analysis of the formulation in a simplified setting. From the convergence analysis, we infer that a particular type of meshes with a macro-element structure is needed, which can be easily obtained after a straight modification of any original mesh.
منابع مشابه
Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations
We propose a convergent implicit stabilized finite element discretization of the nonstationary incompressible magnetohydrodynamics equations with variable density, viscosity, and electric conductivity. The discretization satisfies a discrete energy law, and a discrete maximum principle for the positive density, and iterates converge to weak solutions of the limiting problem for vanishing discre...
متن کاملAn adaptive finite element method for magnetohydrodynamics
We describe a procedure for the adaptive h-refinement solution of the incompressible MHD equations in stream function form using a stabilized finite element formulation. The mesh is adapted based on a posteriori spatial error estimates of the magnetic field using both recovery and order extrapolation techniques. The step size for time integration is chosen so that temporal discretization errors...
متن کاملA Stabilized Mixed Finite Element Method for Nearly Incompressible Elasticity
We present a new multiscale/stabilized finite element method for compressible and incompressible elasticity. The multiscale method arises from a decomposition of the displacement field into coarse (resolved) and fine (unresolved) scales. The resulting stabilizedmixed form consistently represents the fine computational scales in the solution and thus possesses higher coarse mesh accuracy. The en...
متن کاملOn the Existence , Uniqueness , and Finite Element Approximation of Solutions of the Equations of Stationary , Incompressible Magnetohydrodynamics
We consider the equations of stationary, incompressible magnetohydrodynamics posed in a bounded domain in three dimensions and treat the full, coupled system of equations with inhomogeneous boundary conditions. Under certain conditions on the data, we show that the existence and uniqueness of the solution of a weak formulation of the equations can be guaranteed. We discuss a finite element disc...
متن کاملStabilized finite element formulation for elastic–plastic finite deformations
This paper presents a stabilized finite element formulation for nearly incompressible finite deformations in hyperelastic–plastic solids, such as metals. An updated Lagrangian finite element formulation is developed where mesh dependent terms are added to enhance the stability of the mixed finite element formulation. This formulation circumvents the restriction on the displacement and pressure ...
متن کامل